Introduction to Machine Learning

Ethem Alpaydin 2014-08-29

The goal of machine learning is to program computers to use example data or past experience to solve a given problem. Many successful applications of machine learning exist already, including systems that analyze past sales data to predict customer behavior, optimize robot behavior so that a task can be completed using minimum resources, and extract knowledge from bioinformatics data. Introduction to Machine Learning is a comprehensive textbook on the subject, covering a broad array of topics not usually included in introductory machine learning texts. Subjects include supervised learning; Bayesian decision theory; parametric, semi-parametric, and nonparametric methods; multivariate analysis; hidden Markov models; reinforcement learning; kernel machines; graphical models; Bayesian estimation; and statistical testing.

Machine learning is rapidly becoming a skill that computer science students must master before graduation. The third edition of Introduction to Machine Learning reflects this shift, with added support for beginners, including selected solutions for exercises and additional example data sets (with code available online).

Other substantial changes include discussions of outlier detection; ranking algorithms for perceptrons and support vector machines; matrix decomposition and spectral methods; distance estimation; new kernel algorithms; deep learning in multilayered perceptrons; and the nonparametric approach to Bayesian methods. All learning algorithms are explained so that students can easily move from the equations in the book to a computer program. The book can be used by both advanced undergraduates and graduate students. It will also be of interest to professionals who are concerned with the application of machine learning methods.

Mathematics for Machine Learning

Marc Peter Deisenroth 2020-04-23

The fundamental mathematical tools needed to understand machine learning include linear algebra, analytic geometry, matrix decompositions, vector calculus, optimization, probability and statistics. These topics are traditionally taught in disparate courses, making it hard for data science or computer science students, or professionals, to efficiently learn the mathematics. This self-contained textbook bridges the gap between mathematical and machine learning texts, introducing the mathematical concepts with a minimum of prerequisites. It uses these concepts to derive four central machine learning methods: linear regression, principal component analysis, Gaussian mixture models and support vector machines. For students and others with a mathematical background, these derivations provide a starting point to machine learning texts. For those learning the mathematics for the first time, the methods help build intuition and practical experience with applying mathematical concepts. Every chapter includes worked examples and exercises to test understanding. Programming tutorials are offered on the book’s web site.

Machine Learning

Kevin P. Murphy 2012-08-24

A comprehensive introduction to machine learning that uses probabilistic models and inference as a unifying approach. Today’s Web-enabled deluge of electronic data calls for automated methods of data analysis. Machine learning provides these, developing methods that can automatically detect patterns in data and then use the uncovered patterns to predict future data. This textbook offers a comprehensive and self-contained introduction to the field of machine learning, based on a unified, probabilistic approach. The coverage combines breadth and depth, offering necessary background material on such topics as probability, optimization, and linear algebra as well as discussion of recent developments in the field, including conditional random fields, L1 regularization, and deep learning. The book is written in an informal, accessible style, complete with pseudo-code for the most important algorithms. All topics are copiously illustrated with color images and worked examples drawn from such application domains as biology, text processing, computer vision, and robotics. Rather than providing a cookbook of different heuristic methods, the book stresses a principled model-based approach, often using the language of graphical models to specify models in a concise and intuitive way. Almost all the models described have been implemented in a MATLAB software package—PMTK (probabilistic modeling toolkit)—that is freely available online. The book is suitable for upper-level undergraduates with an introductory-level college math background and beginning graduate students.

Data Mining: Practical Machine Learning Tools and Techniques

Ian H. Witten 2011-02-03

Data Mining: Practical Machine Learning Tools and Techniques, Third Edition, offers a thorough grounding in machine learning concepts as well as practical advice on applying machine learning tools and techniques in real-world data mining situations. This highly anticipated third edition of the most acclaimed work on data mining and machine learning will teach you everything you need to know about preparing inputs, interpreting outputs, evaluating results, and the algorithmic methods at the heart of successful data mining. Thorough updates reflect the technical changes and modernizations that have taken place in the field since the last edition, including new material on Data Transformations, Ensemble Learning, Massive Data Sets, Multi-instance Learning, plus a new version of the popular Weka machine learning software developed by the authors. Witten, Frank, and Hall include both tried-
learning expertise doesn’t quite mean you can create your own Turing Test-proof android—as in the movie Ex
understanding A.I. (inc.com, 2021) Your comprehensive entry-level guide to machine learning While machine
Machine Learning For Dummies
and-true techniques of today as well as methods at the leading edge of contemporary research. The book is
targeted at information systems practitioners, programmers, consultants, developers, information technology
managers, specification writers, data analysts, data modelers, database R&D professionals, data warehouse
engineers, data mining professionals. The book will also be useful for professors and students of upper-level
undergraduate and graduate-level data mining and machine learning courses who want to incorporate data
mining as part of their data management knowledge base and expertise. Provides a thorough grounding in
machine learning concepts as well as practical advice on applying the tools and techniques to your data mining
projects. Offers concrete tips and techniques for performance improvement that work by transforming the input or
output in machine learning methods Includes downloadable Weka software toolkit, a collection of machine
learning algorithms for data mining tasks—in an updated, interactive interface. Algorithms in toolkit cover: data
pre-processing, classification, regression, clustering, association rules, visualization

The Minimum Description Length Principle—Peter D. Grünwald 2007 This introduction to the MDL Principle
provides a reference accessible to graduate students and researchers in statistics, pattern classification, machine
learning, and data mining, to philosophers interested in the foundations of statistics, and to researchers in
other applied sciences that involve model selection.

contains tutorial overviews and research papers representative of trends in the area of machine learning as
viewed from an artificial intelligence perspective. The book is organized into six parts. Part I provides an overview
of machine learning and explains why machines should learn. Part II covers important issues affecting the design
of learning programs—particularly programs that learn from examples. It also describes inductive learning
systems. Part III deals with learning by analogy, by experimentation, and from experience. Parts IV and V discuss
learning from observation and discovery, and learning from instruction, respectively. Part VI presents two studies
on applied learning systems—one on the recovery of valuable information via inductive inference; the other on
inducing models of simple algebraic skills from observed student performance in the context of the Leeds
Modeling System (LMS). This book is intended for researchers in artificial intelligence, computer science, and
cognitive psychology; students in artificial intelligence and related disciplines; and a diverse range of readers,
including computer scientists, robotics experts, knowledge engineers, educators, philosophers, data analysts,
psychologists, and electronic engineers.

Reinforcement Learning, second edition—Richard S. Sutton 2018-11-13 The significantly expanded and
updated new edition of a widely used text on reinforcement learning, one of the most active research areas in
artificial intelligence. Reinforcement learning, one of the most active research areas in artificial intelligence, is
a computational approach to learning whereby an agent tries to maximize the total amount of reward it receives
while interacting with a complex, uncertain environment. In Reinforcement Learning, Richard Sutton and Andrew
Barto provide a clear and simple account of the field’s key ideas and algorithms. This second edition has been
significantly expanded and updated, presenting new topics and updating coverage of other topics. Like the first
edition, this second edition focuses on core online learning algorithms, with the more mathematical material set
off in shaded boxes. Part I covers as much of reinforcement learning as possible without going beyond the tabular
case for which exact solutions can be found. Many algorithms presented in this part are new to the second
dition, including UCB, Expected Sarsa, and Double Learning. Part II extends these ideas to function
approximation, with new sections on such topics as artificial neural networks and the Fourier basis, and offers
expanded treatment of off-policy learning and policy-gradient methods. Part III has new chapters on
reinforcement learning’s relationships to psychology and neuroscience, as well as an updated case-studies chapter
including AlphaGo and AlphaGo Zero, Atari game playing, and IBM Watson’s wagering strategy. The final chapter
discusses the future societal impacts of reinforcement learning.

Machine Learning For Dummies—John Paul Mueller 2021-02-09 One of Mark Cuban’s top reads for better
understanding A.I. (inc.com, 2021) Your comprehensive entry-level guide to machine learning While machine
learning expertise doesn’t quite mean you can create your own Turing Test-proof android—as in the movie Ex
Machine—a it is a form of artificial intelligence and one of the most exciting technical means of identifying
opportunities and solving problems fast and on a large scale. Anyone who masters the principles of machine
learning is mastering a big part of our tech future and opening up incredible new directions in careers that
include fraud detection, optimizing search results, serving real-time ads, credit-scoring, building accurate and
sophisticated pricing models—and way, way more. Unlike most machine learning books, the fully updated 2nd
Edition of Machine Learning For Dummies doesn’t assume you have years of experience using programming
languages such as Python (R source is also included in a downloadable form with comments and explanations),
but lets you in on the ground floor; covering the entry-level materials that will get you up and running building
models you need to perform practical tasks. It takes a look at the underlying—and fascinating—math principles
that power machine learning but also shows that you don’t need to be a math whiz to build fun new tools and
apply them to your work and study. Understand the history of AI and machine learning .Work with Python 3.8 and
TensorFlow 2.x (and R as a download) Build and test your own models Use the latest datasets, rather than the
worst data found in other books Apply machine learning to real problems Whether you want to learn for
college or to enhance your business or career performance, this friendly beginner’s guide is your best
introduction to machine learning, allowing you to become quickly confident using this amazing and fast-
developing technology that’s impacting lives for the better all over the world.

Pattern Recognition and Machine Learning—Christopher M. Bishop 2016-08-23 This is the first textbook on
pattern recognition to present the Bayesian viewpoint. The book presents approximate inference algorithms that
permit fast approximate answers in situations where exact answers are not feasible. It uses graphical models to
describe probability distributions when no other books apply graphical models to machine learning. No previous
knowledge of pattern recognition or machine learning concepts is assumed. Familiarity with multivariate calculus
and basic linear algebra is required, and some experience in the use of probabilities would be helpful though not
essential as the book includes a self-contained introduction to basic probability theory.

Machine Learning Refined—Jeremy Watt 2016-09-08 Providing a unique approach to machine learning, this text
contains fresh and intuitive, yet rigorous, descriptions of all fundamental concepts necessary to conduct research,
build products, tinker, and play. By prioritizing geometric intuition, algorithmic thinking, and practical real world
applications in disciplines including computer science, natural language processing, economics, neuroscience,
recommender systems, physics, and biology, this text provides readers with both a lucid understanding of
foundational material as well as the practical tools needed to solve real-world problems. With in-depth Python and
MATLAB/OCTAVE-based computational exercises and a complete treatment of cutting edge numerical
optimization techniques, this is an essential resource for students and an ideal reference for researchers and
practitioners working in machine learning, computer science, electrical engineering, signal processing, and
numerical optimization.

Deep Learning With Python—Jason Brownlee 2016-05-13 Deep learning is the most interesting and powerful
machine learning technique right now. Top deep learning libraries are available on the Python ecosystem like
Theano and TensorFlow. Tap into their power in a few lines of code using Keras, the best-of-breed applied deep
learning library. In this Ebook, learn exactly how to get started and apply deep learning to your own machine
learning projects.

Discovering Knowledge in Data—Daniel T. Larose 2014-07-08 The field of data mining lies at the confluence of
predictive analytics, statistical analysis, and business intelligence. Due to the ever-increasing complexity and size
of data sets and the wide range of applications in computer science, business, and health care, the process of
discovering knowledge in data is more relevant than ever before. This book provides the tools needed to thrive
in today’s big data world. The author demonstrates how to leverage a company’s existing databases to increase
profits and market share, and carefully explains the most current data science methods and techniques. The
reader will “learn data mining by doing data mining”. By adding chapters on data modelling preparation, imputation of missing data, and multivariate statistical analysis, Discovering Knowledge in Data, Second Edition remains the eminent reference on data mining. The second edition of a highly praised, successful reference on
data mining, with thorough coverage of big data applications, predictive analytics, and statistical analysis.
Includes new chapters on Multivariate Statistics, Preparing to Model the Data, and Imputation of Missing Data,

mchi-no-learning-np-tomitchell-i-exercise-solutions 2/6
Dated coded from herchelbeer.com on September 28, 2021 by guest
and an Appendix on Data Summarization and Visualization. Offers extensive coverage of the R statistical programming language. Contains 280 end-of-chapter exercises. Includes a companion website for university instructors who adopt the book.

Machine Learning - Mohsen Mohammed 2016-08-19

Machine learning, one of the top emerging sciences, has an extremely broad range of applications. However, many books on the subject provide only a theoretical approach, making it difficult for a newcomer to grasp the subject material. This book provides a more practical approach to explaining the concepts of machine learning algorithms and describing the areas of application for each algorithm, using simple practical examples to demonstrate each algorithm and showing how different issues related to these algorithms are applied.

Programming Collective Intelligence - Toby Segaran 2007-08-16

Want to tap the power behind search rankings, product recommendations, social bookmarking, and online matchmaking? This fascinating book demonstrates how you can build Web 2.0 applications to mine the enormous amount of data created by people on the Internet. With the sophisticated algorithms in this book, you can write smart programs to access interesting datasets from other web sites, collect data from users of your own applications, and analyze and understand the data once you’ve found it. Programming Collective Intelligence takes you into the world of machine learning and statistics, and explains how to draw conclusions about user experience, marketing, personal tastes, and human behavior in general — all from information that you and others collect every day. Each algorithm is described clearly and concisely with code that can immediately be used on your web site, blog, Wiki, or specialized application. This book explains: Collaborative filtering techniques that enable online retailers to recommend products or media Methods of clustering to detect groups of similar items in a large dataset Search engine features that enable keyword-based searching and query engines, and the PageRank algorithm Optimization algorithms that search millions of possible solutions to a problem and choose the best one Bayesian filtering, used in spam filters for classifying documents based on word types and other features Using decision trees not only to make predictions, but to model the way decisions are made Predicting numerical values rather than classifications to build price models Support vector machines to match people in online dating sites Non-negative matrix factorization to find the independent factors in a dataset Evolving machine learning — how a computer develops its skill by improving its own code The more it plays a game Each chapter includes exercises for extending the algorithms to make them more powerful. Go beyond simple database-backed applications and put the wealth of Internet data to work for you. “Bravo! I cannot think of a better way for a developer to first learn these algorithms and methods, nor can I think of a better way for me (an old AI dog) to reinvigorate my knowledge of the details.” — Dan Russell, Google “Toby’s book does a great job of breaking down the complex subject matter of machine-learning algorithms into practical, easy-to-understand examples that can be directly applied to analysis of social interaction across the Web today. If I had this book two years ago, it would have saved precious time going down some fruitless paths.” — Tim Wolters, CTO, Collective Intellect

Mobile Robotics - Ulrich Nehmzow 2012-12-06

Mobile Robotics: A Practical Introduction (2nd edition) is an excellent introduction to the foundations and methods required for designing completely autonomous mobile robots. A fascinating, cutting-edge, research topic, autonomous mobile robotics is now taught in more and more universities. In this book you are introduced to the fundamental concepts of this complex field via twelve detailed case studies that show how to build and program real working robots. Topics covered include: finding your way around, autonomous navigation in unmodified, noisy and unpredictable environments, and high fidelity robot simulation. This new edition includes a new chapter on real-world building your practical introduction to mobile robotics for a general scientific audience. It is essential reading for 2nd and 3rd year undergraduate students and postgraduate students studying robotics, artificial intelligence, cognitive science and robot engineering. The update and overview of core concepts in mobile robotics will assist and encourage practitioners of the field and set challenges to explore new avenues of research in this exciting field. The author is Senior Lecturer at the Department of Computer Science at the University of Essex. “A very fine overview over the overwhelming problems to be solved in the attempt to bring intelligence to moving whicle.” Professor Dr. Ewald von Puttkamer, University of Kaiserslautern “Case studies show ways of achieving an impressive repertoire of kinds of learned behaviour, navigation and map-building. The book is an admirable introduction to this modern approach to mobile robotics and certainly gives a great deal of food for thought. This is an important and thought-provoking book.” Alex M. Andrew in Kybernetes Vol 29 No 4 and Robotics Vol 18

Through a series of recent breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This practical book shows you how. By using concrete examples, minimal theory, and two production-ready Python frameworks—Scikit-Learn and TensorFlow—author Aurélien Géron helps you gain an intuitive understanding of the concepts and tools for building intelligent systems. You’ll learn a range of techniques, starting with simple linear regression and progressing to deep neural networks. With exercises in each chapter to help you apply what you’ve learned, all you need is programming experience to get started. Explore the machine learning landscape, particularly neural nets Use Scikit-Learn to track an example machine-learning project end-to-end Explore several training models, including support vector machines, decision trees, random forests, and ensemble methods Use the TensorFlow library to build and train neural nets Dive into neural network architectures, including convolutional nets, recurrent nets, and deep reinforcement learning Learn techniques for training and scaling deep neural nets

Artificial Intelligence and Machine Learning Fundamentals - Zsolt Nagy 2018-12-12

Create AI applications in Python and lay the foundations for your career in data science Key Features Practical examples that explain key machine learning algorithms Explore neural networks in detail with interesting examples Master core AI concepts with engaging activities Book Description Machine learning and neural networks are pillars on which you can build intelligent applications. Artificial Intelligence and Machine Learning Fundamentals begins by introducing you to Python and discussing AI search algorithms. You will cover in-depth mathematical topics, such as regression and classification, illustrated by Python examples. As you make your way through the book, you will progress to advanced AI techniques and concepts, and work on real-life datasets to form decision trees and clusters. You will be introduced to neural networks, a powerful tool based on Moore’s law. By the end of this book, you will grasp how to apply your newfound skills! What you will learn Understand the importance, principles, and fields of AI Implement basic artificial intelligence concepts with Python Apply regression and classification concepts to real-world problems Perform predictive analysis using decision trees and random forests Carry out clustering using the k-means and mean shift algorithms Understand the fundamentals of deep learning via practical examples Who this book is for Artificial Intelligence and Machine Learning Fundamentals is for software developers and data scientists who want to enrich their projects with machine learning. You do not need any prior experience in AI. However, it’s recommended that you have knowledge of high school-level mathematics and at least one programming language (preferably Python).

Machine Learning with Python for Everyone - Mark Fennes 2019-07-30

The Complete Beginner’s Guide to Understanding and Building Machine Learning Systems with Python Machine Learning with Python for Everyone will help you master the processes, patterns, and strategies you need to build effective learning systems, even if you’re an absolute beginner. If you can write some Python code, this book is for you, no matter how little college-level programming knowledge you have. This book covers all the fundamentals of machine learning, with Python examples to communicate the ideas of machine learning. Mark begins by discussing machine learning and what it can do; introducing key mathematical and computational topics in an approachable manner; and walking you through the first steps in building, training, and evaluating learning systems. Step by step, you’ll fill out the components of a practical learning system, broaden your toolbox, and explore some of the field’s most sophisticated and exciting techniques. Whether you’re a student, analyst, scientist, or hobbyist, this guide’s insights will help you build effective learning systems every time you ever build or use. Understand machine learning algorithms, models, and core machine learning concepts. Classify examples with classifiers, and quantify examples with regressors. Realistically assess performance of machine learning systems Use feature engineering to smooth rough data into useful forms Chain multiple components into one system and tune its performance Apply machine learning techniques to images and text. Connect the core concepts to neural networks and graphical models. Leverage the Python scikit-learn library and other powerful tools. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.
An Introduction to Computational Learning Theory-Michael J. Kearns 1994 Emphasizing issues of computational efficiency, Michael Kearns and Umesh Vazirani introduce a number of central topics in computational learning theory for researchers and students in artificial intelligence, neural networks, theoretical computer science, and statistics. Emphasizing issues of computational efficiency, Michael Kearns and Umesh Vazirani introduce a number of central topics in computational learning theory for researchers and students in artificial intelligence, neural networks, theoretical computer science, and statistics. Computational learning theory is a new and rapidly expanding area of research that examines formal models of induction with the goals of discovering the common methods underlying efficient learning algorithms and identifying the computational impediments to learning. Each topic in the book has been chosen to elucidate a general principle, which is explored in a precise formal setting. Intuition has been emphasized in the presentation to make the material accessible to the nontheoretician while still providing precise arguments for the specialist. This balance is the result of new proofs of established theorems, and new presentations of the standard proofs. The topics covered include the motivation, definitions, and fundamental results, both positive and negative, for the widely studied L. G. Valiant model of Probably Approximately Correct Learning; Occam's Razor, which formalizes a relationship between learning and data compression; the Vapnik-Chervonenkis dimension; the equivalence of weak and strong learning; efficient learning in the presence of noise by the method of statistical queries; relationships between learning and cryptography; and the resulting computational limitations on efficient learning; reducibility between learning problems, and algorithms for learning finite automata from active experimentation.

Practical Machine Learning with Python-Dipanjan Sarkar 2017-12-20 Master the essential skills needed to recognize and solve complex problems with machine learning and deep learning. Using real-world examples that leverage the popular Python machine learning ecosystem, this book is your perfect companion for learning the art and science of machine learning to become a successful practitioner. The concepts, techniques, tools, frameworks, and methodologies used in this book will teach you how to think, design, build, and execute machine learning systems and projects successfully. Practical Machine Learning with Python follows a structured and comprehensive three-tiered approach packed with hands-on examples and code. Part 1 focuses on understanding machine learning concepts and tools. This includes machine learning basics with a broad overview of algorithms, techniques, concepts and applications, followed by a tour of the entire Python machine learning ecosystem. Brief guides for useful machine learning tools, libraries and frameworks are also covered. Part 2 details standard machine learning pipelines, with an emphasis on data processing analysis, feature engineering, and modeling. You will learn how to process, wrangle, summarize and visualize data in its various forms. Feature engineering and selection methodologies will be covered in detail with real-world datasets followed by model building, tuning, interpretation and deployment. Part 3 explores multiple real-world case studies spanning diverse domains and industries like retail, transportation, movies, music, marketing, computer vision and finance. For each case study, you will learn the application of various machine learning techniques and methods. The hands-on examples will help you become familiar with state-of-the-art machine learning tools and techniques and understand what algorithms are best suited for any problem. Practical Machine Learning with Python will empower you to start solving your own problems with machine learning today! What You'll Learn Execute end-to-end machine learning projects and systems Implement hands-on examples with industry standard, open source, robust machine learning tools and frameworks Review case studies depicting applications of machine learning and deep learning on diverse domains and industries Apply a wide range of machine learning models including regression, classification, and clustering. Understand and apply the latest models and methodologies from deep learning including CNNs, RNNs, LSTMs and transfer learning. Who This Book Is For IT professionals, analysts, developers, data scientists, engineers, graduate students
An Introduction to Machine Learning-Miroslav Kuhat 2017-08-31 This textbook presents fundamental machine learning concepts in an easy to understand manner by providing practical advice, using straightforward examples, and offering engaging discussions of relevant applications. The main topics include Bayesian classifiers, nearest-neighbor classifiers, linear and polynomial classifiers, decision trees, neural networks, and support vector machines. Later chapters show how to combine these simple tools by way of “boosting,” how to exploit them in more complicated domains, and how to deal with diverse advanced practical issues. One chapter is dedicated to the popular genetic algorithms. This revised edition contains three entirely new chapters on critical topics regarding the pragmatic application of machine learning in industry. The chapters examine multi-label domains, unsupervised learning and its use in deep learning, and logical approaches to induction. Numerous chapters have been expanded, and the presentation of the material has been enhanced. The book contains many new exercises, numerous solved examples, thought-provoking experiments, and computer assignments for independent work.

Probability for Machine Learning-Jason Brownlee 2019-09-24 Probability is the bedrock of machine learning. You cannot develop a deep understanding and application of machine learning without it. Cut through the equations, Greek letters, and confusion, and discover the topics in probability that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover the importance of probability to machine learning, Bayesian probability, entropy, density estimation, maximum likelihood, and much more.

Machine Learning for Decision Makers-Patanjali Kashyap 2018-01-04 Take a deep dive into the concepts of machine learning as they apply to contemporary business and management. You will learn how machine learning techniques are used to solve fundamental and complex problems in society and industry. Machine Learning for Decision Makers serves as an excellent resource for establishing the relationship of machine learning with IoT, big data, and cognitive and cloud computing to give you an overview of how these modern areas of computing relate to each other. This book introduces a collection of the most important concepts of machine learning and sets them in context with other vital technologies that decision makers need to know about. These concepts span the process from envisioning the problem to applying machine-learning techniques to your particular situation. This discussion also provides an insight to help deploy the results to improve decision-making. The book uses case studies and jargon busting to help you grasp the theory of machine learning quickly. You’ll soon gain the big picture of machine learning and how it fits with other cutting-edge IT services. This knowledge will give you confidence in your decisions for the future of your business. What You Will Learn Discover the machine learning, big data, and cloud and cognitive computing technology stack Gain insights into machine learning concepts and practices Understand business and enterprise decision-making using machine learning Absorb machine-learning best practices Who This Book Is For Managers tasked with making key decisions who want to learn how and when machine learning and related technologies can help them.

Introduction To Algorithms-Thomas H. Cormen 2001 The first edition won the award for Best 1990 Professional and Scholarly Book in Computer Science and Data Processing by the Association of American Publishers. There are books on algorithms that are rigorous but incomplete and others that cover masses of material but lack rigor. Introduction to Algorithms combines rigor and comprehensiveness. The book covers a broad range of algorithms in depth, yet makes their design and analysis accessible to all levels of readers. Each chapter is relatively self-contained and can be used as a unit of study. The algorithms are described in English and in a pseudocode designed to be readable by anyone who has done a little programming. The explanations have been kept elementary without sacrificing depth of coverage or mathematical rigor. The first edition became the standard reference for professionals and a widely used text in universities worldwide. The second edition features new chapters on the role of algorithms, probabilistic analysis and randomized algorithms, and linear programming, as well as extensive revisions to virtually every section of the book. In a subtle but important change, loop invariants are introduced early and used throughout the text to prove algorithm correctness. Without changing the mathematical and analytic focus, the authors have moved much of the mathematical foundations material from Part 1 to an appendix and have included additional motivational material at the beginning.

Machine Learning and Security-Clarence Chi 2018-01-26 Can machine learning techniques solve our computer security problems and finally put an end to the cat-and-mouse game between attackers and defenders? Or is this hope merely hype? Now you can dive into the science and answer this question for yourself! With this practical guide, you’ll explore ways to apply machine learning to security issues such as intrusion detection, malware classification, and network analysis. Machine learning and security specialists Clarence Chi and David Freeman provide a framework for discussing the marriage of these two fields, as well as a toolkit of machine-learning algorithms that you can apply to an array of security problems. This book is ideal for security engineers and data scientists alike. Learn how machine learning has contributed to the success of modern spam filters. Quickly detect anomalies, including breaches, fraud, and impending system failure. Conduct malware analysis by extracting useful information from computer binaries. Uncover attackers within the network by finding patterns inside datasets. Examine how attackers exploit consumer-facing websites and app functionality. Translate your machine learning algorithms from the lab to production. Understand the threat attackers pose to machine learning systems.

Mastering Machine Learning with Scikit-Learn-Gavin Hackeling 2014-10-29 If you are a software developer who wants to learn how machine learning models work and how to apply them effectively, this book is for you. Familiarity with machine learning fundamentals and Python will be helpful, but is not essential.

Introduction to Deep Learning-Eugene Charniak 2019-02-19 A project-based guide to the basics of deep learning. This concise, project-driven guide to deep learning takes readers through a series of program-writing tasks that introduce them to the use of deep learning in such areas of artificial intelligence as computer vision, natural-language processing, and reinforcement learning. The author, a longtime artificial intelligence researcher specializing in natural-language processing, covers feed-forward neural nets, convolutional neural nets, word embeddings, recurrent neural nets, sequence-to-sequence learning, deep reinforcement learning, unsupervised models, and other fundamental concepts and techniques. Students and practitioners learn the basics of deep learning by working through programs in Tensorflow, an open-source machine learning framework. “I find learning computer science material best by sitting down and writing programs,” the author writes, and the book reflects this approach. Each chapter includes a programming project, exercises, and references for further reading. An early chapter is devoted to Tensorflow and its interface with Python, the widely used programming language. Familiarity with linear algebra, multivariate calculus, and probability and statistics is required, as is a rudimentary knowledge of programming in Python. The book can be used in both undergraduate and graduate courses; practitioners will find it an essential reference.

AI and Cognitive Science ’90-Michael F. McTear 2013-03-14 This book contains the edited versions of papers presented at the 3rd Irish Conference on Artificial Intelligence and Cognitive Science, which was held at the University of Ulster at Jordanstown, Northern Ireland on 20-21 September 1990. The main aims of this annual conference are to promote AI research in Ireland, to provide a forum for the exchange of ideas amongst the different disciplines concerned with the study of cognition, and to provide an opportunity for industry to see what research is being carried out in Ireland and how they might benefit from the results of this research. Although most of the participants at the conference came from universities and companies within Ireland, a positive feature of the conference was the extent of interest shown outside of Ireland, resulting in participants from USA, Canada,
Austria, and England. The keynote speakers were Professor David Chin, University of Hawaii, and Professor Derek Partridge, University of Exeter, and the topics included machine learning, AI tools and methods, expert systems, speech, vision, natural language, reasoning with uncertain information, and explanation. The sponsors of the conference were Digital Equipment Co (Galway) and the Industrial Development Board for Northern Ireland.

Statistical Methods for Machine Learning-Jason Brownlee 2018-05-30 Statistics is a pillar of machine learning. You cannot develop a deep understanding and application of machine learning without it. Cut through the equations, Greek letters, and confusion, and discover the topics in statistics that you need to know. Using clear explanations, standard Python libraries, and step-by-step tutorial lessons, you will discover the importance of statistical methods to machine learning, summary stats, hypothesis testing, nonparametric stats, resampling methods, and much more.

Thoughtful Machine Learning with Python-Matthew Kirk 2017-01-16 Gain the confidence you need to apply machine learning in your daily work. With this practical guide, author Matthew Kirk shows you how to integrate and test machine learning algorithms in your code, without the academic subtext. Featuring graphs and highlighted code examples throughout, the book features tests with Python’s Numpy, Pandas, Scikit-Learn, and SciPy data science libraries. If you’re a software engineer or business analyst interested in data science, this book will help you: Reference real-world examples to test each algorithm through engaging, hands-on exercises Apply test-driven development (TDD) to write and run tests before you start coding Explore techniques for improving your machine-learning models with data extraction and feature development Watch out for the risks of machine learning, such as underfitting or overfitting data Work with K-Nearest Neighbors, neural networks, clustering, and other algorithms

An Introduction to Support Vector Machines and Other Kernel-based Learning Methods-Nello Cristianini 2000-03-23 This is the first comprehensive introduction to Support Vector Machines (SVMs), a generation learning system based on recent advances in statistical learning theory. SVMs deliver state-of-the-art performance in real-world applications such as text categorisation, hand-written character recognition, image classification, biosequences analysis, etc., and are now established as one of the standard tools for machine learning and data mining. Students will find the book both stimulating and accessible, while practitioners will be guided smoothly through the material required for a good grasp of the theory and its applications. The concepts are introduced gradually in accessible and self-contained stages, while the presentation is rigorous and thorough. Pointers to relevant literature and web sites containing software ensure that it forms an ideal starting point for further study. Equally, the book and its associated web site will guide practitioners to updated literature, new applications, and on-line software.